ε-Distortion Complexity for Cantor Sets

نویسنده

  • C. Bonanno
چکیده

We define the ε-distortion complexity of a set as the shortest program, running on a universal Turing machine, which produces this set at the precision ε in the sense of Hausdorff distance. Then, we estimate the ε-distortion complexity of various central Cantor sets on the line generated by iterated function systems (IFS’s). In particular, the ε-distortion complexity of a C Cantor set depends, in general, on k and on its box counting dimension, contrarily to Cantor sets generated by polynomial IFS or random affine Cantor sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distortion Results and Invariant Cantor Sets of Unimodal Maps

A distortion theory is developed for S−unimodal maps. It will be used to get some geometric understanding of invariant Cantor sets. In particular attracting Cantor sets turn out to have Lebesgue measure zero. Furthermore the ergodic behavior of S−unimodal maps is classified according to a distortion property, called the Markov-property.

متن کامل

Examples of Ε-exhaustive Pathological Submeasures

A submeasure θ on a Boolean algebra B is pathological if it does not dominate a positive finitely additive functional. It is ε-exhaustive if every sequence {An} of pairwise disjoint sets in B satisfies lim supn θ(An) ≤ ε. It is exhaustive if it is 0-exhaustive. It is normalized if θ(1B) = 1. Question 1. Is there a normalized exhaustive pathological submeasure on the algebra of clopen subsets of...

متن کامل

Cantor Sets, Binary Trees and Lipschitz Circle Homeomorphisms

We define the notion of rotations on infinite binary trees, and construct an irrational tree rotation with bounded distortion. This lifts naturally to a Lipschitz circle homeomorphism having the middle-thirds Cantor set as its minimal set. This degree of smoothness is best possible, since it is known that no C1 circle diffeomorphism can have a linearly self-similar Cantor set as its minimal set.

متن کامل

Effectively approximating measurable sets by open sets

We answer a recent question of Bienvenu, Muchnik, Shen, and Vereshchagin. In particular, we prove an effective version of the standard fact from analysis which says that, for any ε > 0 and any Lebesgue-measurable subset of Cantor space, X ⊆ 2, there is an open set Uε ⊆ 2, Uε ⊇ X, such that μ(Uε) ≤ μ(X) + ε, where μ(Z) denotes the Lebesgue measure of Z ⊆ 2. More specifically, our main result sho...

متن کامل

The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators

In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007